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Abstract

In this work, we propose a hierarchical extension of the polygonality index
as the means to characterize geographical planar networks. By considering
successive neighborhoods around each node, it is possible to obtain more
complete information about the spatial order of the network at progressive
spatial scales. The potential of the methodology is illustrated with respect to
synthetic and real geographical networks.

PACS numbers: 89.75.Fb, 02.10.0x, 89.75.Da

1. Introduction

Geographical complex networks have been used to model a number of real world systems,
including airports, railways, electric power grids, urban roads, urban streets, among others
[1]. In particular, these networks have also been used to model several biological systems,
such as bone structures [2] and interconnectivity between mammalian cortical areas [3]. In
these systems, the physical proximity and communication between neighboring elements are
critical in order to guarantee proper development and biological function. It is also known
(e.g. [4]) that many biological systems depend on the proper adjacency of cells for correct
development, e.g. cell communication, distribution of cells in retina, kidney structures, among
many others.

Despite the large set of tools and measurements used to characterize the networks that
underlie these systems [5], relatively little attention has been given to the spatial organization
of the nodes. In order to address this issue, we propose the use of the polygonality index
[6, 7]—a robust measurement able to quantify the spatial order of systems of points—over
the nodes of a geographical planar network. In its original version [6], the polygonality
index provides a local quantification (i.e. with respect to each node) of the uniformity of the
distribution of the angles between the reference node and its immediate neighbors. In this
work we extend that concept in order to account for progressive concentric neighborhoods
(the hierarchical neighborhoods) around each node.

1751-8113/08/224004+09$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1


http://dx.doi.org/10.1088/1751-8113/41/22/224004
mailto:luciano@if.sc.usp.br
http://stacks.iop.org/ JPhysA/41/224004

J. Phys. A: Math. Theor. 41 (2008) 224004 B A N Travencolo and L da F Costa

Figure 1. Quantifying the spatial organization around a node. All the angles «; formed between
successive neighbors (1, ..., N (k)) of the node k are used to compute the polygonality index (see
equations (1) and (2)).

This paper starts by presenting, in section 2, a short description of the polygonality index
and its extension to subsequent hierarchical levels of the network. Section 3 presents some
applications of the proposed methodology, considering a synthetic and a real geographical
networks.

2. Hierarchical polygonality index

The polygonality index [6] assigns to each node of the network a value that indicates the
amount of the angular organization around the node, with respect to the connections with
its immediate neighbors. This value is computed based on the angle «; formed between
successive neighbors of a node, as exemplified in figure 1 and expressed by the following
equation:

1
SV e — Bl + 1

where k is the node under analysis, N (k) is the number of immediate neighbors of the
node k and B is a parameter whose value can be fixed so as to characterize specific spatial
arrangements (e.g. By = /3 for the characterization of hexagonality), or can vary accordingly
to the number of neighbors of the nodes, i.e., B = 27 /N (k). A fixed value of B; allows one
to identify whether the spatial position of the adjacent nodes obeys a specific arrangement
(hexagonal, orthogonal, etc). On the other hand, when the value of §; depends on the number
of neighbors, the polygonality index indicates how well the angles between the neighbors
are equally distributed. In both cases, the polygonality index varies between O (total lack of
angular order) and 1 (fully organized system). Because of the intrinsic relationship between
angular and spatial organization of the points (or nodes), a high level of angular order tends
to imply spatial order. In other words, it is virtually impossible to obtain a spatially irregular
distribution of points which has high angular order. It should also be observed that the
polygonality index was originally proposed to characterize systems of isolated points, whose
connectivity is needed to be inferred by establishing a neighborhood system (e.g. by using the
Voronoi tessellation). In the case of geographical networks, the neighborhoods are intrinsically
provided by the respective topology of the network.

Ak) = (D
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Figure 2. Hierarchical neighbors used to estimate the spatial organization. Hierarchical neighbors
1 (a), 2 (b) and 3 (c¢). The virtual edges (thicker lines) between the central node and its
hierarchical neighbors are used to estimate the angles «; for the polygonality index computation (see
equation (2)).

In this paper, we extend the concept of the polygonality index in order to allow the
quantification of the angular and spatial order in a complex network while considering several
hierarchical levels around each node. Note that the connections between a node p and its
successive neighborhoods define a tree (therefore a hierarchy of levels), so that the first
neighbors belong to the first hierarchy (first level of the tree), the second neighbors belong to
the second hierarchy (second level of the tree) and so on. For the extension of the polygonality
index, instead of considering only the immediate neighbors of a node to estimate the angle «;,
the virtual edges [8] are also taken into account. In case a node i connects to a node j and the
latter is linked to a node k (with i # k), we say that a virtual edge of length 2 is established
between nodes i and k. This definition can be immediately extended to further hierarchies. The
angles between subsequent virtual edges are taken into account to compute the polygonality
index. Therefore, the expression presented in equation (1) can be reformulated in order to
include the hierarchical level £, resulting in

Ap(k) = @)

Ny (k ’
YN g — Bl +1

where N, (k) is the number of neighbors of the node k at hierarchy &. Figure 2 illustrates the
computation of such a polygonality index for three different hierarchical levels of a node.
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Figure 3. Hierarchical polygonality index for a perturbed hexagonal lattice. The hierarchical
level (h), the mean (1) and standard deviation (o) values of the polygonality index are (a) h = 1,
n=0.63,0 =0.07,(b) h =2,u =0.64,0 = 0.05and (¢) h = 3, x = 0.61,0 = 0.05. The
gray scale bar for the polygonality indices is shown at the right-hand side of the figure.

3. Results and discussion

The proposed methodology was employed to analyze two geographical planar networks.

The first network is a synthetic structure whose nodes are arranged in a perfect hexagonal
lattice (the connections are determined by considering the nearest neighbors of the nodes).
The mean (u) and standard deviation (o) values of the polygonality index of the nodes
were determined considering different hierarchical levels. The value adopted for B; varies
according to the number of neighbors of the point under analysis (8; = 27w /N,(k)). For the
first hierarchical level, as the nodes and its neighbors are arranged in a hexagonal way, the
polygonality index for all nodes achieves its maximum value (4 = 1 and o = 0). In the case
of the second hierarchy, the angles defined between successive neighbors of the nodes
are constant and equal to By = 7w /6. As a consequence, the polygonality index for each
node is also at its maximum value (x = 1 and ¢ = 0). On the other hand, when considering
the third hierarchy, the angles between successive neighbors are no longer constant, but the
polygonality index is the same for all nodes (ux = 0.73 and o = 0).

The potential of the proposed methodology can be clearly verified when the positions
of the nodes of the hexagonal lattice are perturbed in order to reduce the overall order, as
illustrated by the network shown in figure 3. This perturbation is accomplished by performing
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Figure 4. Polygonality index of the network of the urban streets of Sdo Carlos, Brazil. The
hierarchical levels 1 (a), 2 (b) and 3 (c) were considered. The gray levels of the nodes vary
accordingly to their polygonality indices as shown in the scale bar. In (a), A, B and C indicate the
location of the most regular regions of the network when the first hierarchy is considered.

a small displacement, in a random direction, of the node position in the hexagonal lattice. The
polygonality index for this network was determined for the hierarchical levels 1 (figure 3(a),
© =0.63 and o = 0.07), 2 (figure 3(b), u = 0.64 and o = 0.05) and 3 (figure 3(c), » = 0.61
and o = 0.05). In all these images, the gray levels of the nodes indicate the polygonality index
accordingly to the scalar bar presented at the right-hand side of figure 3. It is interesting to
verify that several nodes have markedly different polygonality indices at different hierarchies,
confirming the fact that a node can be perfectly polygonal at the first hierarchy and highly
disordered at the second and/or third levels. It is such a complementary characterization of
the spatial order around each node which makes the hierarchical polygonality measurement
particularly valuable for characterizing spatial order.

The second example considers a network of urban streets (e.g. [9-12]). The network
was derived from a map of the streets of the town of Sdo Carlos, Brazil. Image processing
techniques were used in order to derive the network. The nodes of the network are located at
the crossings of the streets and the connections are given by the streets, resulting in a network
with 4537 nodes and 7527 edges. Figure 4(a) shows a representation of a portion of this
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Figure 5. Relative frequency histogram of the polygonality indices of the urban streets of Sao
Carlos. These graphics corresponds to the first (a), the second (b) and the third (c) hierarchical
levels.

network. The polygonality index of this network considering B, = 2w /N, (k) was determined
for the hierarchical levels 1 (figure 4(a)), 2 (figure 4(b)) and 3 (figure 4(c)). As can be seen
in figure 4(a) and in the peak in the distribution of the polygonality index in the histogram of
figure 5(a), three main regions of the town present high spatial organization at the first level
(regions A, B and C in figure 4(a)). However, most of the nodes have a small polygonality
index when the hierarchical levels 2 and 3 are considered, as shown in figures 4(b) and (c) and
the histograms in figures 5(b) and (c). In both cases, only two regions of the town (regions B
and C in figure 4(a)) present a high spatial order also at these two higher levels. These regions,
which correspond to the center of the more organized groups of nodes, can be considered as
the spatially most regular portions of the considered network, as they exhibit high polygonality
indices over all the three considered hierarchies.

In order to demonstrate further the discriminative power of the hierarchical polygonality
indices for higher levels (i.e. 2 and 3), consider the scatterplot shown in figure 6(a). In this
scatterplot, the polygonality index of the first hierarchy is shown against the polygonality index
of the second hierarchy. Note that a cluster of points is formed at the upper-right quadrant of
the scatterplot (dashed rectangle) which could by no means be identified by taking into account
only the first polygonality index (i.e. the horizontal axis). The network nodes belonging to
this cluster, characterized by a particularly high polygonality index for the first and second
hierarchical levels, are shown as white circles in figure 6(b), while the other nodes are shown
in black. Two of the most organized regions of the town are again clearly identifiable. Observe
that one of the regions previously identified (i.e. region A in figure 4(a)) does not contain any
of the nodes in the cluster in figure 6(a). Therefore, this region is spatially ordered only at the
first hierarchical level. Such a discrimination between the three regions of high spatial order
at the first level would have been completely impossible had not the higher levels been taken
into account.
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Figure 6. Identification of the most organized regions of the town revealed by the combination of
the first two polygonality indices. (a) Scatterplot defined by the polygonality indices of the first
and second hierarchical levels. The dashed rectangle identifies a cluster of points characterized by
high polygonality at both first and second levels. (b) Network of urban streets of Sdo Carlos. The
nodes of the network which corresponds to the points contained in the cluster in (@) are shown in
white, while all the other nodes are shown in black.

Finally, in order to compare the results obtained here to other properties of the same
network, we also characterized the network of urban streets of Sao Carlos by using the set of
measures proposed by Cardillo et al [12]. In their work is proposed the use of the meshedness
coefficient M [13], a measure able to quantify the connectivity of planar network, which
ranges from zero (tree network) to one (fully connected planar graph). In the case of Sdo
Carlos, the value obtained was M = 0.330, indicating that the town has a relative complex
form [12]. The other measures considered in the same work were the number of short cycles
(Cy) of length I = 3,4, 5 [14]. These values were normalized with respect to the number of
cycles (C ,G T) of the network formed by the greed triangulation of the nodes [15]. The values
obtained for the urban street analyzed in this work were C3/C3GT = 0.031, C4/CfT = 0.088
and Cs / CSG T = 0.017. These values can be compared with other cities presented in [12].
Observe that the major number of cycles refer to Cy / CS7T, indicating a dominance of squares
with respect to triangles in this network. In addition, when comparing this result with the
polygonality index over all hierarchies (figure 4), it can be noted that the most regular regions
of the town are comprised of squares.

4. Concluding remarks

Complex networks have been extensively used in order to represent the connectivity structure of
a wide range of complex systems, from protein interaction to the Internet (e.g. [16, 17]). While
a growing number of measurements have been proposed and applied in order to characterize
such networks, substantially fewer works have addressed the equally important problem of
quantifying the spatial properties of geographical networks. Being characterized by the fact
that their nodes possess well-defined positions, geographical networks can be used to represent
a large variety of real complex systems, including power distribution, transportation systems
(e.g. airports and railways), as well as urban streets.
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The concept of polygonality has been used [6, 18] to provide an overall quantification
of the spatial organization of systems of objects. By establishing a neighborhood system
among the constituent points (achieved through Voronoi tessellation), it becomes possible to
define the neighbors of each point. The polygonality index quantifies the uniformity of the
successive angles around each point. The current work extended the concept of polygonality
to reflect the neighborhood defined by the network connectivity as well as to reflect a wider
neighborhood around each node in a geographical planar network. By doing so, it is possible
to derive a better understanding of the spatial order along successive spatial scales, therefore
reflecting the context around node in a more comprehensive way. This has been achieved by
making use of the concept of hierarchical neighborhoods, which had been previously explored
for the characterization of topological aspects of complex networks (e.g. [19]). In addition
to presenting the extended polygonality index, we also illustrated the potential of this new
measurement with respect to a synthetic situation (perfect and perturbed hexagonal lattice) as
well as a real network defined by the streets and street intersections of a Brazilian town (Sao
Carlos). The results obtained for the latter application make it clear that the two most regular
regions of the network (i.e. those surrounded by several spatially regular neighborhoods—
regions B and C) presented higher index values for a wider range of hierarchies, which would
be otherwise overlooked by the traditional polygonality index. Another region identified in the
town exhibits high values of the first level polygonality but low values at the second and third
levels (region A). These results were also complemented and compared to the meshedness
coefficient [13] and the number of short cycles [14].

All in all, the suggested hierarchical polygonality indices allowed a comprehensive
characterization of the spatial organization of geographical complex networks. They can
also be compared with several other measurements related to the dynamics and connectivity
of the network, paving the way to obtaining new insights about relationships between the
topological and geometrical properties of these networks.
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